skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Ya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseBetter understanding of the relationship between plant specialized metabolism and traditional medicine has the potential to aid in bioprospecting and untangling of cross‐cultural use patterns. However, given the limited information available for metabolites in most plant species, understanding medicinal use–metabolite relationships can be difficult. The order Caryophyllales has a unique pattern of lineages of tyrosine‐ or phenylalanine‐dominated specialized metabolism, represented by mutually exclusive anthocyanin and betalain pigments, making Caryophyllales a compelling system to explore the relationship between medicine and metabolites by using pigment as a proxy for dominant metabolism. MethodsWe compiled a list of medicinal species in select tyrosine‐ or phenylalanine‐dominant families of Caryophyllales (Nepenthaceae, Polygonaceae, Simmondsiaceae, Microteaceae, Caryophyllaceae, Amaranthaceae, Limeaceae, Molluginaceae, Portulacaceae, Cactaceae, and Nyctaginaceae) by searching scientific literature until no new uses were recovered. We then tested for phylogenetic clustering of uses using a “hot nodes” approach. To test potential non‐metabolite drivers of medicinal use, like how often humans encounter a species (apparency), we repeated the analysis using only North American species across the entire order and performed phylogenetic generalized least squares regression (PGLS) with occurrence data from the Global Biodiversity Information Facility (GBIF). ResultsWe hypothesized families with tyrosine‐enriched metabolism would show clustering of different types of medicinal use compared to phenylalanine‐enriched metabolism. Instead, wide‐ranging, apparent clades in Polygonaceae and Amaranthaceae are overrepresented across nearly all types of medicinal use. ConclusionsOur results suggest that apparency is a better predictor of medicinal use than metabolism, although metabolism type may still be a contributing factor. 
    more » « less
  2. Abstract PremiseThe Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole‐genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. MethodsWe constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. ResultsThe ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4–56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants inColobanthusandEremogone, along with other functional annotations. ConclusionsGene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep‐time evolutionary patterns in plants. 
    more » « less
  3. Summary In this study, we investigate the genetic mechanisms responsible for the loss of anthocyanins in betalain‐pigmented Caryophyllales, considering our hypothesis of multiple transitions to betalain pigmentation.Utilizing transcriptomic and genomic datasets across 357 species and 31 families, we scrutinize 18 flavonoid pathway genes and six regulatory genes spanning four transitions to betalain pigmentation. We examined evidence for hypotheses of wholesale gene loss, modified gene function, altered gene expression, and degeneration of the MBW (MYB‐bHLH‐WD40) trasnscription factor complex, within betalain‐pigmented lineages.Our analyses reveal that most flavonoid synthesis genes remain conserved in betalain‐pigmented lineages, with the notable exception ofTT19orthologs, essential for the final step in anthocyanidin synthesis, which appear to have been repeatedly and entirely lost. Additional late‐stage flavonoid pathway genes upstream ofTT19also manifest strikingly reduced expression in betalain‐pigmented species. Additionally, we find repeated loss and alteration in the MBW transcription complex essential for canonical anthocyanin synthesis.Consequently, the loss and exclusion of anthocyanins in betalain‐pigmented species appear to be orchestrated through several mechanisms: loss of a key enzyme, downregulation of synthesis genes, and degeneration of regulatory complexes. These changes have occurred iteratively in Caryophyllales, often coinciding with evolutionary transitions to betalain pigmentation. 
    more » « less
  4. Chapman, Tracey (Ed.)
    Abstract Chromosome number change is a driver of speciation in eukaryotic organisms. Carnivorous sundews in the plant genus Drosera L. exhibit single chromosome number variation both among and within species, especially in the Australian Drosera subg. Ergaleium D.C., potentially linked to atypical centromeres that span much of the length of the chromosomes. We critically reviewed the literature on chromosome counts in Drosera, verified the taxonomy and quality of the original counts, and reconstructed dated phylogenies. We used the BiChrom model to test whether rates of single chromosome number increase and decrease, and chromosome number doubling differed between D. subg. Ergaleium and the other subgenera and between self-compatible and self-incompatible lineages. The best model for chromosome evolution among subgenera had equal rates of chromosome number doubling but higher rates of single chromosome number change in D. subg. Ergaleium than in the other subgenera. Contrary to expectation, self-incompatible lineages had a significantly higher rate of single chromosome loss than self-compatible lineages. We found no evidence for an association between differences in single chromosome number changes and diploidization after polyploidy or centromere type. This study presents an exemplar for critically examining published cytological data and rigorously testing factors that may impact the rates of chromosome number evolution. 
    more » « less
  5. null (Ed.)
    The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world —from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding and theory of the causes and consequences of changes in biodiversity and at the interface of plant physiology, ecology and evolution. INTELLECTUAL MERIT The Institute brings together a diverse, gender-balanced and highly productive team with significant leadership experience that spans biological disciplines and career stages and is poised to integrate biology in new ways. Together, the team will harness the potential of spectral biology, experiments, observations and synthetic modeling in a manner never before possible to transform understanding of how variation within and among biological scales drives plant and ecosystem responses to global change over diurnal, seasonal and millennial time scales. In doing so, it will use and advance state-of-the-art theory. The institute team posits that the designed projects will unearth transformative understanding and biological rules at each of the various scales that will enable an unprecedented capacity to discern the linkages between physiological, ecological and evolutionary processes in relation to the multi-dimensional nature of biodiversity in this time of massive planetary change. A strength of the proposed Institute is that it leverages prior federal investments in research and formalizes partnerships with foreign institutions heavily invested in related biodiversity research. Most of the planned projects leverage existing research initiatives, infrastructure, working groups, experiments, training programs, and public outreach infrastructure, all of which are already highly synergistic and collaborative, and will bring together members of the overall research and training team. BROADER IMPACTS A central goal of the proposed Institute is to train the next generation of diverse integrative biologists. Post-doctoral, graduate student and undergraduate trainees, recruited from non-traditional and underrepresented groups, including through formal engagement with Native American communities, will receive a range of mentoring and training opportunities. Annual summer training workshops will be offered at UMN and UW as well as training experiences with the Global Change and Biodiversity Research Priority Program (URPP-GCB) at the University of Zurich (UZH) and through the Canadian Airborne Biodiversity Observatory (CABO). The Institute will engage diverse K-12 audiences, the general public and Native American communities through Market Science modules, Minute Earth videos, a museum exhibit and public engagement and educational activities through the Bell Museum of Natural History, the Cedar Creek Ecosystem Science Reserve (CCESR) and the Wisconsin Tribal Conservation Association. 
    more » « less
  6. Abstract Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade. 
    more » « less